Search results for "Bayesian hierarchical models"
showing 4 items of 4 documents
Conditional predictive inference for online surveillance of spatial disease incidence
2011
This paper deals with the development of statistical methodology for timely detection of incident disease clusters in space and time. The increasing availability of data on both the time and the location of events enables the construction of multivariate surveillance techniques, which may enhance the ability to detect localized clusters of disease relative to the surveillance of the overall count of disease cases across the entire study region. We introduce the surveillance conditional predictive ordinate as a general Bayesian model-based surveillance technique that allows us to detect small areas of increased disease incidence when spatial data are available. To address the problem of mult…
Prediction and Surveillance Sampling Assessment in Plant Nurseries and Fields
2022
In this paper, we propose a structured additive regression (STAR) model for modeling the occurrence of a disease in fields or nurseries. The methodological approach involves a Gaussian field (GF) affected by a spatial process represented by an approximation to a Gaussian Markov random field (GMRF). This modeling allows the building of maps with prediction probabilities regarding the presence of a disease in plants using Bayesian kriging. The advantage of this modeling is its computational benefit when compared with known spatial hierarchical models and with the Bayesian inference based on Markov chain Monte Carlo (MCMC) methods. Inference through the use of the integrated nested Laplace app…
Fishery-dependent and -independent data lead to consistent estimations of essential habitats
2016
AbstractSpecies mapping is an essential tool for conservation programmes as it provides clear pictures of the distribution of marine resources. However, in fishery ecology, the amount of objective scientific information is limited and data may not always be directly comparable. Information about the distribution of marine species can be derived from two main sources: fishery-independent data (scientific surveys at sea) and fishery-dependent data (collection and sampling by observers in commercial vessels). The aim of this paper is to compare whether these two different sources produce similar, complementary, or different results. We compare them in the specific context of identifying the Es…
Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach
2021
In this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator spe…