Search results for "Bayesian hierarchical models"

showing 4 items of 4 documents

Conditional predictive inference for online surveillance of spatial disease incidence

2011

This paper deals with the development of statistical methodology for timely detection of incident disease clusters in space and time. The increasing availability of data on both the time and the location of events enables the construction of multivariate surveillance techniques, which may enhance the ability to detect localized clusters of disease relative to the surveillance of the overall count of disease cases across the entire study region. We introduce the surveillance conditional predictive ordinate as a general Bayesian model-based surveillance technique that allows us to detect small areas of increased disease incidence when spatial data are available. To address the problem of mult…

multiple comparisonsGeorgiaIncidenceSouth Carolinalagged loss functionBayes TheoremBayesian hierarchical modelspublic health surveillanceArticleconditional predictive ordinatePopulation Surveillancespatial dataSalmonella InfectionsCluster AnalysisHumansComputer SimulationPoisson Distribution
researchProduct

Prediction and Surveillance Sampling Assessment in Plant Nurseries and Fields

2022

In this paper, we propose a structured additive regression (STAR) model for modeling the occurrence of a disease in fields or nurseries. The methodological approach involves a Gaussian field (GF) affected by a spatial process represented by an approximation to a Gaussian Markov random field (GMRF). This modeling allows the building of maps with prediction probabilities regarding the presence of a disease in plants using Bayesian kriging. The advantage of this modeling is its computational benefit when compared with known spatial hierarchical models and with the Bayesian inference based on Markov chain Monte Carlo (MCMC) methods. Inference through the use of the integrated nested Laplace app…

Fluid Flow and Transfer ProcessesEstadística bayesianaProcess Chemistry and TechnologyGeneral EngineeringModels matemàticsGeneral Materials ScienceBayesian kriging; Bayesian hierarchical models; Gaussian Markov random field (GMRF); integrated nested Laplace approximation (INLA); stochastic partial differential equation (SPDE)InstrumentationComputer Science ApplicationsApplied Sciences
researchProduct

Fishery-dependent and -independent data lead to consistent estimations of essential habitats

2016

AbstractSpecies mapping is an essential tool for conservation programmes as it provides clear pictures of the distribution of marine resources. However, in fishery ecology, the amount of objective scientific information is limited and data may not always be directly comparable. Information about the distribution of marine species can be derived from two main sources: fishery-independent data (scientific surveys at sea) and fishery-dependent data (collection and sampling by observers in commercial vessels). The aim of this paper is to compare whether these two different sources produce similar, complementary, or different results. We compare them in the specific context of identifying the Es…

0106 biological scienceshttp://aims.fao.org/aos/agrovoc/c_28840Biodiversité et Ecologiehabitatmodélisation spatialehttp://aims.fao.org/aos/agrovoc/c_38371OceanographyGaleus melastomus01 natural sciencesRessource halieutiquehttp://aims.fao.org/aos/agrovoc/c_38127Scyliorhinus caniculamodèle hiérarchiqueSpatial statisticsEcologymodèle de distributionSampling (statistics)Contrast (statistics)Cross-validationModélisation et simulationGeographyHabitatGestion des pêchesModeling and Simulationhttp://aims.fao.org/aos/agrovoc/c_10566http://aims.fao.org/aos/agrovoc/c_3456http://aims.fao.org/aos/agrovoc/c_38117survey designMarine conservationSpecies Distribution ModelsEcology (disciplines)Bayesian probabilityEtmopterus spinaxenquête statistiqueDonnée sur les pêchesmodèle spatiotemporelSede Central IEOContext (language use)Aquatic ScienceDistribution des populationsBayesian hierarchical models010603 evolutionary biologyhttp://aims.fao.org/aos/agrovoc/c_24026elasmobranchsBiodiversity and Ecologyélasmobrancheétude comparativeBayesian hierarchical models;Cross-validation;Species Distribution Models;Spatial statistics;INLA;elasmobranchs ; survey designINLA14. Life underwaterspecies distribution modelsEcology Evolution Behavior and Systematicshttp://aims.fao.org/aos/agrovoc/c_6113collecte des donnéesÉcologie marinehttp://aims.fao.org/aos/agrovoc/c_29788http://aims.fao.org/aos/agrovoc/c_4609010604 marine biology & hydrobiologyGestion et conservation des pêchescross validation[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationmodèle bayésienFisheryM01 - Pêche et aquaculture - Considérations généraleshttp://aims.fao.org/aos/agrovoc/c_2a75d27eThéorie bayésienneM40 - Écologie aquatiqueSpatial ecologyhttp://aims.fao.org/aos/agrovoc/c_2942[SDE.BE]Environmental Sciences/Biodiversity and Ecologyvalidation croiséeElasmobranchii
researchProduct

Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach

2021

In this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator spe…

0106 biological sciencesGeneral MathematicsSpecies distributionBayesian probabilityspeciescoregionalized modelsBayesian hierarchical models010603 evolutionary biology01 natural sciences010104 statistics & probabilitymodelsEngraulisHakeAnchovyStatisticsComputer Science (miscellaneous)INLAdistributionEuropean anchovyPesqueríasCentro Oceanográfico de Murcia0101 mathematicsEngineering (miscellaneous)SPDEfishspecies interactionbiologymathematicslcsh:MathematicsUnivariateMerluccius merlucciusbiology.organism_classificationlcsh:QA1-939fisheriesEnvironmental sciencepredation
researchProduct